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PROPERTIES OF EVEN-LENGTH BARKER CODES
AND SPECIFIC POLYPHASE CODES WITH
BARKER TYPE AUTOCORRELATION FUNCTION

INTRODUCTION

A Barker code is a sequence of N numbers x; (where x; = +1), which has the following auto-
correlation function:

N-K N forK=0
RIK) = 2 X Xiog ™ (18)
f=l DortlforK=12, ..., (N=-1

i.e., the "time sidelobes" in the autocorrelation function do not exceed the level of 1.

In radar applications, the sequence modulates the phase of the signal (some constant carrier fre-
quency) from code element to code element. For a stationary target the above property (1a) holds, but
now, since the time variable is continuous, we get small triangles in the autocorrelation function whose
peaks are 0 or *1, and a big triangle whose peak is N (the match point). For a moving target we actu-
ally have the crosscorrelation function of the transmitted code and the target return, resulting in higher
sidelobes. Only the autocorrelation function will be considered here.

The known code Iengths having the property of Eq. (1a) are 2, 3, 4, 5, 7, 11, 13 {1].

It hes been shown that no Berker code of odd length exists for & > 13. Also, if an even-length
Barker code exists, it must be a perfect square (2], i.e., N = 1. Since Nis even, s also even.

The purpose here is to investigate the possibility of cven-length Barker codes grestor than the
known of length 2 (+ + and ~ +) and 4 (+ + ~ + and + + + ). Possible candidates for this are, for
example. lengths of 16, 36, 64, 100, etc., but is was verified (2] that up to N = 6084 (/= 78) no
Barker code exists.

It x, iz not restricted to +1, =1, but can be any complox number whose magnitude is unity
Ix,] = 1, then the sutocorrelation function is requited to Mulfill:

N (oo K=
N=-K
R(K) = 2:‘ %% * 10 or € unity magnitude (1%)

forK=1,2 .., N=-1
In general, R(K) is a complex number. The complex conjugate is denoicd by *.

DEFINITION (for convenience): A code with property (1b) is a polhode. It is sctually 3
polyphase code with Barker type autocorrelation function (excluding the real Barker codes). Specific
types of polphodes arc the generalized Barker codes (3] which are derived from a “father” real Barker
code. These will be discussed later.

Manusenpt submitled Febeuary 9, 1982
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The following analysis will investigate the properties of even-length Barker codes and polphodes
(where N = 2, Nand /are even), if they exist. The analysis of Barker codes (for which Turyn [2] con-
siders evidence overwhelming that they do not exist) will lead to the analysis of the general case of pol-
phodes.

GENERAL ANALYSIS: SPECTRUM

The general description of a phase-coded signal is shown in Fig. 1. We are interested in a con-
stant amplitude code; thus, without loss of generality, we assume its amplitude is 1, and its carrier fre-
quency is constant fq.

st
Hé283 0 ] N
! xi=1-ol=1q/8
i CODE ELEMENT
—] e ..E. COMPLEX ENVELOPE
. il
0 T

Fig. | — General description of a phuss-coded signal

The signal duration T is divided into N code elements, cach of 7/ N duration, and each code ole-
ment has phase ¢, (for Barket codes ¢, can take only 0, values corresponding to real x, which equal
+1, ~1 in the sequence), where i= 1, 2, ..., N. For polphodes, ¢, can take any value resulting in a
complex sgquence x,. Wi will specify the restrictions on ¢, whenever they apply.

Taking out the carrier frequency, the complex envelope of cach code slement is 1/, = ¢’* The
analysis from now on will be carried out with the complex envelope.

The spectrum of the signal is

N
S(N) =¥ 5N, )
‘g 1
where $,(/) is the spectrom of the # code element:
- J:i'
S = [ stoe e ngim [ 5 snesteny )
- -glr-l)
¥ A
S(f) _ff Sine s ige v 5 se e+
w
I
+ Sn(t)em el @
r-

and after a change of variables in the intcgrals (in ordet 10 have the same limits in cach onc)
Tt e
$Ur= f N o hmiteng 4 1R f N Fp-ilesiy
v 0
T G )
“ej G N
+te N fo e v (s)

2

<
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jzlnf o ['1 _ | e"’[l - e—JZv/T/N]e~.12'/T/N
o
+ €j¢3[1 - e-IZufT/N]e—IZw/‘ZT/N+ . .}, 6)
1= e /2m/TIN | 1o J(ay=22fTIN)
SN ~ 7 [e + e
g O R2TIN D
3 o o-J2fTIIN (_}_ T| sin Qm/fT/2N) |Above
:f. define
T
S9N ®
| and ¢ is a scaled frequency variable. Thea,
(e 2T ~nsingl b -2
N2 ( 3 N} e . {e + ¢
+ ¢ J(" “’ L+ e)“y*(N-UN’ . (‘0)

This is the basic spoctrum expression that we will wtilize through the analysis. The sin /@ term
in Eq. (10) is due the basic code element longth 7/ N, and the tsrms in the right brackei are due to the
phase coding inside the code.

i the signal bandwidth is B and we sample it al the Nyquist rate, then T/N « 1/ 8 (this is
because in general we use Jand @ processing, which requires sampling 3t once, and not twice, the
s : reciprocal of the bandwidth), In this case ¢ » #f/Band (~1/2) T/ N =1/2B But we will proceed
- ] with the gencral anaiysis.

|

The powar spactruss is
SN = S() S*( (1)

and it is the Fourier ttansform of the autocorrelation function. Note that 1S(/¥]? is always  real func-
tion of £, aad R{r) is an even function of = for real codes, while Rir) « R*(—r) for complex codes.

Te see this relation in the discrete phase code, let us examine in detail Barker codes of leagths 7
and 4.

BARKER CODE 7

This code is known to be:

R T
é 0 0 0 # = 0 =

ot o o ot
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Notice here that changing the signs of all the code elements does not change the property of the
autocorrelation function. This means that one can choose arbitrarily the sign of the first code element.
This is true for any Barker code, and polphode, and we will choose the first code element to be x; = +1
(or equivalently ¢, = 0%) from now on, unless otherwise stated.

The autocorrelation function is shown in Fig. 2 (where r = K_Nl‘ K=01, ..., N=1).

Rix)

~4

CORRELATION PEAK AS RESULT
OF 7 TERM IN THE POWER SPECTRUM

o TIME SIDE LOBES
AS RESULT OF

CA—— .
[ L N 3
AVAVANARBAVAVALVARE It

MATCH POINT
{PEAK OF CORRELATION)

Fig 2 — Autocorrelation function of Barker code 7

According to Eq. (10), substituting the known ¢, for this code we get:

SU) - (-.3%;_’. e"" -s-i-'ii [% - ‘)“‘z' @ ""i“ -— ‘9"'“ ~ e"l“ +*> p"‘“m -— ‘,'1320]' (izﬂ)
and
$* /) - I—-i%] o/t E%—‘-b-‘ [l N U o P, BTl NPT e’ml. (12b)

Carrying out the multiplication of Eys. (12a) and (12b), we get:

2 L -
ISUNE = SU) $*() = {-;-, . li‘%—'&l - I:' N Ea LT S L NPT L PR a‘“]

& i
A ELER I PO -2 cos 8y ~
|5 ][1 2 cos 49 = 2 cos 89 ~ 2 cos 126 a3

We sce in Eq. (13) the Fourier transform refation between |8 (/)12 and the autocorrelation func-
tion; the 7 term in the square bracket of Eq. (13) gives the Forrelation peak. {The 1riangle, whose

width is one code cloment T/N, is ths result of the [9_'3_\&.] term, as known by Fourier transform
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theory.) The three sidelobes (on each side of the match point) are the result of the 2 cos 4y, 2 cos 8y,
2 cos 12y terms in Eq. (13), (for convenience, we will call these terms in |S(f)|? "pseudo-
frequencies," though we should remember that they don’t represent frequencies of the spectrum, since
the spectrum is actually continuous); these "pseudo-frequencies" givg impulses when transformed.

When these impulses are convolved with the triangles due to %q"— , they give the triangle-shaped

sidelobes on each side of the match point. Note that the amplitudes of the cosine terms in Eq. (13) are
2, but in the transform process each cosine appears as 2 impulses whose amplitudes are 1, so that the
amplitudes of the sidelobes are 1 in this specific code. Note also that the sign of the "pseudo-
frequencies” determines the sign of the sidelobe (in this example, all the sidelobes are negative).

Note also that for this example, the multiplication of S(f) by §*(f) caused several e/%* terms
of the spectrum to disappear; here the ™/, ¢=/% and /'™ terms of the spectrum disappeared after
the multiplication, resulting in zero level sidelobes at the corresponding locations of the autocorrelation
function (see Fig. 2).

It is clear that the last term of the spectrum (generally e=/¥ = V¥ and here ¢~/'2) will never
disappear after the multiplication (since no other term can cancel it), corresponding to the fact that the
furthest sidelobe of such code is always +1 or =1,

Clearly, these observations will hold for any phase-coded signal with unity amplitude (c.g.,
polyphase codes like Frank codes), but to any sidelobe in the autocorrelation, say of g magnitude, there
will be a corresponding 2g cos (K - 2¢ + @) “pseudo-frequency” in the power spectrum. Generally g
can be bigger than 1 but for polphodes g is required to be smaller than 1 (9 is some angle that dopends
on the code).

To show this process for even-length codes, examine the Barker code of length 4. It is known
that there are two possibilities which we designate as Barker Codes 4A and 4D

BARKER CODE 4A

+ 0+ 4+ -
4 0 0 0

The autocorrelation function is shown in Fig. 3:

and

S(f)-'-l-3%;,—] et ﬁ%—‘g- ll+a'1“+e"“-—e"“]. (14a)
0if)m |t e |3i0G N g . e -
$*{) { ik ' . [H-e: + ¢ & ] (14b)
A sin !
(e & s (N=il_|}s0g - 3 cos &
1SN e S S* (N '4 5 ” |4+2m2¢_ Zo.osw]. (15)

Agdin, the autocorrelation function corresponds to the “pscudo-lrequencies” of the power spee-
trum n Eq. (18). the match point is 4, the first sidelobe is +1. the second sidelobe is —1, and the
cus U term is missing, resulting in zero leve! at the corresponding point of Fig. 3 (K = 2).

Note that here. for an even length code, the signs of the “pseudo-lrequencies® cos 29, cos 6§ ure
opposite. which results in opposite sign sidclobes in R (7). This property is true for any even-length
(N = /%) Barker code (1}, that mcans;
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Rir}

RESULT OF

R A . sK&
YA IEA 2R

Fig. 3 — Aulocorrelation function of Barker code 4A

()

R(K)+ RIN-K)=Q

(16)

forany K =1, 2, ..., N =1, or equivalently, in |S(/)|* we will have for any + 2 cos K2y term a
corresponding F2 cos (N — K)2¢ term, such that their signs are opposite. This also means that

RiK = % = 0 since the point K = N does not have an “image.” Figure 4 shows the image structure

2

of R(r). Thepoint K = | is the “image“ of K = N — 1, K = 2is the "image" of K = N - 2, etc.

Rir}
“IMAGES™
:m‘: - raKl
e v 2 3 N N2 Nod x(l)
t 2
b
RIK=D) =N R(KG?I-O

Fig 4 = mage strusture of the autocotrelation function of an even-kengih Baiker code

BARKER CODE 4B
+ o+ - +
é: 0 0 = 0

[l PP L JEPL, "‘."“I.

() = |-} e |30
o=l [

. ......_7; o
$*) [lee -

siny [|+e'“~r"‘”’“l~
v

and

. » ?
T lm 4—2coszea+2cosﬁ¢l-

{17a)

(176)

(18)
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The correlation function is shown in Fig. 5. Figure S is "similar” to Fig. 3. But now in the power
spectrum (Eq. (18)), the 2 cos 2, 2 cos 6y terms both have changed signs when compared to Eq.
{15), so that Eq. (16) is fulfilled. This caused the sidelobes in Fig. S to change signs when compared (o
Fig. 3.

Fig. § - Autocarrelation funclion of Barker code 48

Note that Eq. (16) does not hold generally for polphodes.

DEFINITION: Definc a G-polphode as a polphode in which
R(K)+ R (N~ K) =0, . (16a)

This is actually a generalization of Eq. (16). Notice that R(A) can be a complex number in gen-
eral.

As an example, examine the generalized Barker code 4 {3):

| S
é: 0 w/ = w/2

S(/} = '——2%! e 1—553«-‘5] Il N Ml Wl Y -e“'“l. (1%a)
Co L) e fiing Y - S TN T CORE 7Y '
5(])-[ 2,]9 [l R l1-e Je‘l (19b)
and
P sne|j
Vo padlls. 5 H 3
sl L 3 v l4+2sm2¢4-23m6¢l. (20)

corresponding to the values of the suiocorrelation function:
RK=0)=d RiKwl)mj R(Kwdm0 R(Kwd)=j

We clearly see that Eq. (16a) w fuifilied, which means that the above code is a G-polphode.
SYNTHESIS ATTEMPT

With the above analysis we now try to synthesize the Barker type autocorrelation funclion for
even-iength (N = ) codes, Barker and G-polphode.
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Barker Code
Suppose there exists an even-iength Barker code x, x;, ... . xy. x; is either +1 or —1.
The autocorrelation function of the code must be as illustrated in Fig. 6.

Ths match point R(K = 0) = N appears. The nearest and furthest sidelobes must appear with
magnitude | and opposite signs (corresponding to cos 2y and cos (N — 1) 2§ terms of the power spec-
trum). In Fig. 6 we plotted arbitrarily one of the two possibilities for thesc sidelobes. At the midpoint

R[K - -2N— =  as explained before. The dotted sidelobes in the figure might or might not appear.

But if one dotted sidelobe (say of index K) appears, there will be a corresponding *image” sidelobe (of
index N — K) with the opposite sign, as required by Eq. (16). Of course, there will be another two
sidelobes on the other side of the match point (negative r).

Riv)
N
‘4 ’ r\& Iy
ANSD NI AN AN

L Y
N/ N

\ v % \/ _
Fig. 6§ — Autocsirelation Tunction of even-dengd Batkor cades (gonersiiy}

Now, from looking at the desired R{r) in Fig. 6, we can detorming the strutture of the power
spectrum:

. R 2
I$(Nit = (;—%] [f‘i'%i] : an

{ﬁ:2cosz¢:zmu:...+o'zm-§-w=; ...$2cos(N—2)2&+2cos(N-—l)?&};

must appear

The spectoam $(7) of the code is given “y Eq. (10). The magmitude of $(/) must equal the
square root of the power spectrum [S(1 at every point & (@ was defined in Eg. (9) and represents
the frequency variable). Speaidicatly, at the N sampling points .

V=l ymg/N dwda/N ..., d=ie/N ..., 9= (N=1a/N

l/-o. JmUT. = UT o JmilT. ... [ i;—-'-]
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we must have:

Is(f)ll =\/|S(f)|’l ‘ (22)
w-i—& w-i—;

This is a necessary condition for the existence of even-length Barker codes, but might not be a
sufficient condition. Actually, Eq. (22) gives us a set of N equations that must be fulfilled.

Not: that in Eq. (21):

c0s2 - 0wcos (N -1)2-0

fory =0 cosd -0=cos(N—-2)2-0
cos6-0=cos (N-3)2-0
ete.

c0s2  w/Nw=cos (N~1) 2a/N

foryp=wf/N  cosd /N =cos (N=-2)2n/N
cos 6 w/N = cos (N - 3) 2u/N
etc.

cos 2 - iw/Nwcos (N~ 1) 2in/N
fory = iw/N ¢osd in/N = cos (N-2)2ix/N
cos & infN = cas (N~ 3) 2 im/N
elc.
or generally:

cos K - 2iw/N=cos (N=-K)2 in/N (23)

This means that the power spectrum at the N samipling points ¢ = iw/N (i=0, 1, ..., N~ 1) is
(see Eqs. (16), (21)):

ls(/)la lW,”M} ] [~+o+n+.‘.+o} 4)
i

s -t -

i.¢., the power spectrum samples at ¢ = iw/N{i= 0, 1, . N = 1) must be some constant N - -i-“%
t

times (sin ¢/9)} ' (the last term was interpected as the contribution of the basic code element
= e '

P tength T/V).

' Now the spectrum in those N sampling points (sce Eq. (10)) is:

ol il b

mi‘_..... N : s N .
NP 4eien Y -e"'*l. 25)




SHIMSHON GABBAY

Denote
L
e N=w (26)
(this is the known basic phasor of DFT where WV = 1).
SN = [——2%] [e‘f“’ [%—ﬂ ] -ll NPACR 2PN AR eN’”] (27
b lm .y
N N

and requiring (22) results in N equations:

[ =0 ll 1 e M 1 = YN = (28.1)
=1 '1 AN W w2 L+ N e”"I-JN - (28.2)
i=2 |1 WA CPACE AR e""I-JN - (28.3)
im N=1 L e Wit 2% 4 We"NI-JN - (28.N)

and in matrix notation:

I R R | B Cat 1oy
1 W w2 L WN-1 elé; ! &
1 W2 W‘ . WN~2 e./‘; I& (29)
1 WN-I WN—Z . w Jon
¢ I{o

Going from kq. (28) to Eq. (29), we had to take care of the absolute value in the left side of
(28), by placing some 1nknown phases a, in the right side of (29) for each element whose magnitude
should be exactly / = v N.

We can write Eq. (29) as:

AX=V (29)
where A is the known DFT matrix (¥ x N matrix), which is nonsingular with det 4 = 0.

10
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The phasor W is on the unit circle (see Fig. 7).

Jj®y
Xy (e “
4 ; h.
8 X7 el .
e
{ @
X3 e
XNJ e/¢N

is our unknown vector, which represents the required Barker code (x; = -+ 1, o, is either 0 or ).
VLRI
I{e Va
ffes| |V

Vel - |=]-[isa vector whose

| fan] M

‘clements have magnitude ! = /N, with unknown phases a;.

COMMENTS

(1)  Equations (29) are exact necessary conditions.

'g (2) Equations (29) hold only for even-length codes N = {2, A similar analysis for Barker codes 5, 7,
: 11, and 13 shows that the spectrum samples (of the sequence) are not required to have a constan!
magnitude.
. IMAG ,
[
i
3 t
{ W
: :\ \ - 7% REAL
H . A
Pox I
: t \‘
-
: r o
o N ¥ig 7 = The baw DFT phasor W, on the unit circle
1

s e Yt vt
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G-polphode
A similar analysis for the G-polphode, where Eq. (16a) is fulfilled, will give us the same result.
For any time sidelobe R (K) there will be a corresponding R (N — K) time sidelobe such that,
R(K)+R*N—-K)=0
or equivalently: Real [R(K)] + Real [R(N-K)]1 =0
I,[R(K)] - I,[R(N-K)] =0,

This means that the pair of sidelobes R (K) and R (N — K) contribute to the power spectrum:
2 Real [R(K)) {cos K -2y —cos (N - K)2¢} + 21, [R(K)] {sin K + 2¢ + sin (N — K)2y}.

This contribution of the pair goes to zero for the N sampling points ¢ = iz / N, since

im i
cos K ZN-cos(N K)2 N

. im . i
sin K 21V sin(N— K)2 N

(30)

thus resulting in

lS(f)l’! - s-i"i‘-zl “(N+0+0+0+...+0]
! ant | v ] |

gmin .3

N N

as before.

So Eqs. (29) and (29a) hold also for G-poiphodes, but the code clements can be any complex
number with unity magnitude lx,| = 1.

Thus, from now on we can pracead with a @ sequence of numbers X, (real for Barker and complex

for G-mlp}%c) which when DFT transformed (Eq. (29)). gives a vector with constant magnitude ele-
mans /=

We will exanvine first Barker codes.

BARKER CODE STRUUCTURE AND PROPERTIES

To derive several properties of an even-length Barker code (i it exists), we write the mapping Eq.
(29) w a convenient form:

Prxpd bt byt ok b xgw ifay (31.1)
l‘.\'"" W c X+ W"x;-ﬂ- ”’"‘.l""‘".."‘ W""“‘xﬂ- ,L(:! (3].2)
Pap+ Woxp+ Wy + W x4+ WY1 xy = (31.3)

12
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Lrxp=1ox,+1oxg =1 xg+... =1 xy=lfaypy GLN/2+1)
Loxp+ WV2oy 4 W4 W6 x+ ot WP xy = ey, (31N-1)
Loxp+ WV b W2+ WV L+ W xy = lfay GLN)

Erom Eq. (31.1): since x, is real (= 1), a; must be 0 or , so that:
XpHxg+x3+ . kxy= )

number of pluses — number of minuses = =/, 32

But since their sum is N = £; then:

. 4+ \ r=1
CASE 1. if number of pluses = 3 then number of minuses = 5
(e.p ., Batkers + + - +and + + + =)

. - . R+
CASE 2: if number of pluses = 5 then number of minuses = -5

(c.g., Barkers + — - —an¢ -~ + - =)
For simplicity we'ni discuss only Case ! in the following few paragraphs (Case 2 is the "opposite* case).

Note that the differonce bu.ween the number of pluses and minuses gots larger as the code length
increases, which is ot tne case in PN binary sequences.

From Eq. (31.N2+1): agoin anpy must bo v or w, and :
X=Xyt Xo= Xt oo b Ky = Xy e 2l (33)

Lo Odd pluses and even minuses coniribute positive numbers in Eq. (33), while even pluses and odd
v minuscs contribute negative numbers.

A ; ’ Denote:

B

TR ]

! m = number of ody pluses, meni-;—! = m = pumber of even pluses

| ) Ry

P # = number of wld minuses, than e number of even mnuses
From Lqg. (33):

-t/

n.+

- 'l-nl-»[lw— ~m+n

2{m~n)=|=~2

13
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| We have two possibilities:

{ 4 2
! (A) m= n,butsince m + n= 17 (number of all the odd elements}, we get:
iy .
: 2
number of odd pluses = number of odd minuses = IT (34.1)

- ; (e.g., Barker + + — +)

(B) m — n = |, this implies similarly that:

2
number of even pluses =~ number of even minuses = -%- (34.2)
e
- (e.g., Barker + + + —)
L From Egs. (31.2) and (31.N): each weight of the real code elements (x, = +1) in Eq. (31.2) is the

complex conjugate of the corresponding weight in (31.N), e.g., W* = WN™! (W)* = WN-2 etc,, so
that //a; must be the complex conjugate of //ay, or:

ay = —aj. @Gs.
Similarly:
Ay ™ —ay (352)
AN ™ ~Ayg (35.3)
[ ¥V 7] +2m —ann (35-4)
i These equations say that for real codes, Fgs. (29) take the form:

|

X3 ,l-?—g

. Ity

. f0orm

A |.]= L‘"“" . (36)

Iz-a)
N I{—nz

14




NRL REPORT 8586

From Egs. (31.1) and (31.N2+1). by adding and subtracting, we get (taking into account Eq.
(36)):

0

2(Xl + X3 + Xs + X7 + ...+ xN—l) = Or (378)
l
I}

2%+ x4+ xg+ xg+ ...+ xy) = or (370)
0

which are another form of Eq. (34).

Further properties of Barker codes can be derived if one can follow the requirements logically. As
an example, consider the (N/4+1) which is a member of Eq. 31, and its conjugate. With property (36)
in mind {note that these two equations give = 90° shift in the weight from each code element to
another), we get:

i Xy =My — X3+ jxg + 1 ’X5"jXG°'1 Xyt gt .= 1[2 4 (8.1)

and
Pexprigmloxg=ixe+ 1 xs+ xg=1 x3- g+ ... =l{—8. (38.2)

By adding and subtracting we get

2y~ xy + x3= X7+ Xg= Xy + Xpy— x5 ) =B+ I[-8. (39.1)

and
2j (= x5+ X4= X + Xy~ X9 + X3~ X4 ¥ Xig—...)= B - lt"ﬂ ' (39.2)

or

(xy=xy+ x5=~x3+ ...)=lcos g, (40.1)

and
(=xy+ x4=xg+ x,—... )= I5inB. (40.2)

Equations (40) can be fulfilled simultanously for a few possibilitics of the angle 8, since their left
side is an integer (with plus or minus sign). Actually, if /# 5p(not multiple of S), the only values for
g are 0, = 90° + 180° which rosult in an integor on the right side of Eqs. (40.1) and (40.2). If
[ = 5p {multiple of $), there are other possibilitios to get an integer in the right side, since
cos B = 3/5 or cos B = 4/5 results in sin 8 =~ 4/5 or sin B = 3/5, which means we have another "fam-
ity" of possibilities that can fulfill Eqs. (40). Actually, they arc alt the possible combinations of = 3/5,
+ 4/5 for the cos 8. sin B.of Eqs. (40).

Another important observation is derived by adding all the equations of (31). Then in the left
side, all the code clements, except x|, will cancel (because the weights are uniformly distributed pha-
sors in the unity circle of the complex plane), resulting in:

Boxymlfay+ ljag+ifay+ ... +lay,

15
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! and since we can assume x; = |,

P=]f0+1jay+1fas+ ... +1f00rm+ ... +1[-a3+ I[~a;, (41)

which means that all the 2 phasors in the right side of (31) or (36), whose magnitudes are /, and which
appear in pairs of complex conjugates, must sum to /2. This means also that one possible choice of the
phasor’s vector in the right side of (31) is the code itself X times L In such a case, the right side of
(31) is:

IX1+IX2+...+IXN-I(X1+X2+...+XN)-1‘1-12 (42)
as required by (41).

All the above properties ((31) through (42)) can be utilized to reduce the search for even-length
Barker codes.

PHYSICAL INTERPRETATION FOR BARKER CODES
| We can examine now the physical meaning of Eq. (36), as illustrated in Fig. 8. We need to input

the real code x;(:1) to a DFT system, such that we get a constant amplitude /in the output, while the
phases of the output must fulfill some constraints.

X i, S g 1411
DFT

) JX N N = £2 e g [ a2

POINTS) >1lad

N

IMAG.

e darmene by ettt i . -+ ot e 01 S i s

TIME DOMAIN FREQUENCY DOMAIN
Fig. 8 — Physical meaning of Eq. (36): the DFT of the real sequence X, gives constant magnitude phasors
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Now we'll see how the Barker codes for N = 4 (/ = 2) are derived by the above analysis (see Fig.

9).
W_e—j2r/N_e—121r/4-—j
11 1 1 1 1 11
1w wW2w 1 =j-1
A=W wrwiws| = f1-1 1-1f
1 w3 we w? 1 j-1-
We need:

X3 2(1:» or 0}
]

We see from Fig. 9 that C; only can create the dc-frequency term 2 /0, C, only can create the
fundamental frequency 2 /a, etc. Thus the required code Cis a linear combination of C), C;, C;, C;
( in the time domain). If we can find a code Call of whose elements are of unity magnitude, then it is
the required code (note that C, has two possibilities).

X4

Xy %[0
X3 e

Cy: 112 1/2 1/2 172
Cs ja | =) Vifa | <1 12fa | - 1V2[a
¢ @R =y 173 =y

@] -1/2 172 -~1/2 172
Ce V2[=a | =j W2 [=a [ =1 V2 [=a | +] V2 [-a
C X X Xy X,

We have only one parameter {a) to choose in order to have the required code, all of whose elements
must have unity magnitude. We see that if C;@ is examined, & must be +90° or =90° (from the first
column, in order to have x; = 1), so the code is:

Cixym], xym 1, xym ], xqm= =] fora= 90°

C:xy= ], xgm=1, xy=], x;= | fora=-~90°
and if C,(@) is examined, a must be 0° or 180°:

Cxym ], xy= ], 5ym=], xqolfora= 0°

Coxpm=l, xy= ], xy= 1, xg= | fora=180°

All the above codes € are legitimate Baker codes which fulfill all the requitements. Here for N =
4, we had only parameter a to choose, but when AN is large. we have many parameters to choose, such
that all the clements in C will add up to unity.

A pictorial interpretation of the requirciment established by (36) is illustrated in Fig. 10 (only for
Barker codes) (or three elements of the vector matrix described by that equation.

17
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! Xy e p—= 2{0

' [ DFY 2 t.’

| / Xz — (4 POINTS) p—0-2l2

y . X3 —e-2008 1

i THE REQUIRED CODE X 2k

. f REAL
'> _ 2
, b e
A MAG

' FREQUENCY
A TIME SAMPLES SAMPLES

%
) »
’ % DC TERM
Cy 2‘9

' |

LT34 )

(X} FUNOANENTAL TERM
> “*
LY
W

Sl
A
-
é ; ’ Fig. 9 — Dervation of Barker code 4 by physical interpeetation
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PLUSES

Fig. 10 - Pictoria! interpretation of Bg. (36)

LINEAR ALGEBRA POINT OF VIEW

We now analyze our problem for either Barker codes or G-polphodes. Equation (29), which is a
necessary condition for both of them, can bo writtan as:

Ve {1 [
e .

-/

Vas| |1 fonf
or.

| oy
! fay

Van)
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Define:

B= -‘I—A 43)

which is a modified DFT matrix (each element in 4 is divided by /in order to get B.
Then:

BX=Y (44)

o
/oy
y=1 . (44a)

where Yis the vector:

LT
Equation (44) requires the cede vector X to map to vector Y (unity magnitude elements) through
the modified DFT matrix B

This can happen in two ways:

1. The vector Y is some scalar A (might be complex) times X. Then:
BX « XX (45)

We will call this case an cigenvecior mapping code (we have mentioned this possibility for Barker
codes after (41))

2, Y=alx (46)

We will call this case a noneigenvector mapping code.

In order 10 investigate the eigenvector mapping case, we will use some propertios of the matrix B
(over the complex ficld).

Writing (44) in dowil, we gat:

1 1 1 1

P ! "

_l_ LV_ ’_Vi . WA Xy ¥

{ ! ! ] . .
bW Wt N = !
A Y I Xy Yy

- o)

1 Wh-1 yN-4 W Xy Yar
T T Xy ¥a
1owht w1 W

! { 1 ]

where [l =1, [¥]=1 i=1,2, ..., N
20
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PROPERTIES OF B

a. The columnns (or rows) of B are orthonormal:

W =1 iz (48)

where ¥, denotes the ' column vector (note that this is the definition over the complex field, as a gen-
eralization of orthonormality over the real field).

b. Bis symmeltric:
B = BT (49)

Also, its rows {except the first and (/2 + 1)') are pairs of complex conjugates, e.8., the N row
is the complex conjugate of the 2% row, the (N — 1)® row is the complex conjugate of the 3' row, etc.

c. Bis a unitary matrix (this is the complex generalization of an orthogonal matrix over the real
field, where A4 is an orthogonal matrix if 447« ), which is defined by:

B(B*) = |, (50)
or equivalently:
B = (87, (50a)
and in our case, due to (49):
B! =3 (s1)
From (47), (51):
X8 Y (52)
d. |det B] =1 (53)

fot any unitary matrix (soe (4], p. 112), which means that Bis a ;tonsinsnlm mateix of rank N,

e. All the N cigenvalucs of B (a5 a unitaty matrix) are of unity magnitude (see {4} p. 135, prob.
22),

h,l-l | - l, 2. seve N. (“)

It can be vorified that in our case, at lcast Ay = 1, Ay = —1 arc :igonvalues of B, possibly with
some multiplicity. To show this:

| 1 1 1
T ! T
L K W
7 T
] Wi W
1 1 R
18 -ail=| . (5)
1 WA=l -l W
] 7 1 A
21
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Adding all the rows of (55) to the last row we get:
1 1
M

-|""

(B —all=1} . ) (56)

I—A —=A ... A

This last determinant is zero for A; = 1 and A, = —1 (since for both of them we get two propor-
ticnal rows in the determinant).

f. B, as a unitaty matrix, maps any vector X to vector Y, such that their energies arc the same
(mathematicians call this property preservation of length) i.e.:
X +0LX+ v+ X Xv=Y 1 +
Yr¥i+...+ ¥y ¥n (57

Note, however, that if x| = 1 (unity magnitude code) ¥, generally are not necessarily of unity
magnitude. Our problem is to find that |x,| = 1 that will map to | ¥,] = 1, and, of course, it is possible
from an cnergy point of view.

As an example, check the cass { = 2 (N = 4):

Loy o1
2 2 2 2
L= zb y
2 2 2 2
B=tv 1 11
202 2 2
[
2 2 2 2

If the code is an cigeavecior of 8, then, 58X = a X
The cigonvalues are, Ay ], Ay= +1, A==l Aj=—4

so0 that:
dot (B-afl= =D =-DA+1+) (58)

Note that indecd [A,;] = 1 and {det Bl = {ji = | (when substituting & « 0 in (58)).
The scigenvectors are:

1. for A; = A, = | wo havt (wo cigenveclors:

0
0
B-ny=0-~|
0

-_ o O

22
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1

1
Yy=|_jjand V3=
I

)

1
0
1
0
¥, is a Barker code, while ¥, is not. Actually, any linear combination of ¥, and ¥2 that has

constant amplitude is also a good solution (in our case only ¥, and — ¥, are Barker codes).

2. forAy=-1,

00 0 0
21 0 1
[l/ -l -j+2
-1
1
Yy= 1
i

Y, is the ciganvector Barker code (of course, — ¥, is also a good solution).

3. for Ay = ~J,

0101
0000
0
1

Y= ol
-1

The eigenvector ¥, is not o Barker code. Now we will prove that for the cigenveclor mapping
8X =2 X, only A = 41, A = ~] can give us a legitimate Barker code of G-polphods (where |X] = 1).

For an cigenvector mapping we require

11 1 LA
| l !
! W W Xy Xy
7T al |
] W W Xy Xy
P 1 l -
(59)
: xw XN
L A
i ! {

23
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From the first row:

ilixl + ayt+ .o xy) = Ax). (60)

From summing all the Egs. in (59) we get:

(llxl+-1-x|+...+-!~ W F0 X+ 0 x3+ .+ 0 xy = A Fxp+ . Fxy). (61)

! !
From (60) and (61):

12"’. X=X\ <A le, (62)

or
xla}\z Xi. (62a)
Equation (62a) can be fulfilled only if:

a. x, = 0, which will not give a Barker code or G-polphode (requires |x;| = 1),

b. AZ=1or,
A=x1, (63)

which might give a Barker code or a G-polphode.
Thus, 2n eigenvector code can be achieved only for the eigenvalues A = + 1.

The other complex eigenvalues {X;] = 1 will not give a desired code (we saw it in the example for
/=2, where Ay = —j did not ;'ve a Barker code, and, indced, the first ¢lement of the eigenvector ¥,
was x; = 0).

Now we prove that an eigenvector mapping does not have a solution for a Barker code
==+ 1D forl>".

If X =(x;, x5, .... xy)7is ra!, then the eigenvector possibilities are:
forA=1t BY=1:+Xand (64a)
for A= —{: BY =—]"% (64b)

Before procesding with the proof, it will help to observe the cuse | = 2.

a. BX =1 Xugives the eiyenvector Barker codes
- ,,Vl - (+ + - +)T
=V = (== =)

b. BX = —1 - Xgives the eigenvector Barker codes
Vou (= + 4+ 4)7
-Vy- (+ - - =)7

But note that V3= (+ ~ + +)7 and ~¥; = (-~ + — =) T are not cigenvectors of B, though they
arc Barker cudes, which are obviously "symmetrical” to the above ¥, and —¥,. For exampie,

24
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11 1 1

2 2 2 2

1 =t i !

2 2 "2 2| |- |
Bé=11 1 1 afta=)f

272 272 -

1 i1 =

2 27272

¥; is not an eigenvector though it is a Barker code. Similarly, V4= (++ +-=)7 and
- V4= {———+)T (which are symmetrical to the above ¥, and —V,) are Rarker codes but not eigen-
vectors of B. This happens because of h= general requirement that a real eigenvector must obey the
follcving structure (for A = +1):

x) ]l X
X2 X2
B Xy
By |=a| | (65)
XN~ x*
XN X.z

This as explained in Eq. (36) and Fig. 10, for a real code X. But if x; is real (1), then x, = x;,
50 that £q. (65) requires:

Xy - X; - X
XN~ ™ X; - Xn

Xyo3 ™ X4 = Xq, OIC. (66)

We see that V), ~ ¥, ¥, -- ¥, above fulfill this requirement (x; = x), and th: refore can be real
eigenvectors. On the other hand, ¥y, =¥, V.. =¥, do not {uifill (66) (since xq = —~x,), and there-
fore cannot be eigenvectors.

Now to proceed withh the prool, the next candidate for our problem is { = 4 (N = 16).
According to the above analysis, for the real cigenvector mapping. the code structure must fulfill
Eq. (66). Thus, the eigenvector code must be:

CODE: Xy Xy Xy X4 Xy Xy ... X X X4 XX
ELEMENTNO. 1 2 3 4 S5 & ... N4 NJI N2 NI N

whare x, is either | or ~1 (notc thut the above V1, = ¥1, ¥2, - ¥2, fulfill ihis struciure).

To show that this i impossible for [ > 2, we return to the time domain autocorrelation process
by steps.
FIRST STEP

XL Xy Xy Xy
Xy Ny X, ...
xp, xpcan be %1, 50 that RN — 1) =~ %1,

25
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SECOND STEP

W Xg X4 X3 X
Xy X2 X3 X4 Xs...
RIN=-2)=x,-x+ X x3=1+4x; ' x3.

Since R (K) is allowed to be 0 or 1, it follows that x; = —x;

THIRD STEP

W Xg X5 Xg4 —X) X3
X) X3 —X; Xg Xs...
R(IN-3)= X| (X4 - 2X2) 50 that x4 = x;.

FORTH STEP

e Xy Xg X3 —TXp X3
X X2 TXp X3 X§5...
R(N—4)-X2'X2+Xl 'X1+X2'X2+X1X5-3+X1’XS.

No x,, xs (which are + 1) can give the desired autocorrelation function (0 or £ 1), thus proving that no
real eigenvector code exists for { > 2.
By now, we see that the remaining possibilities to meet:
BX=Y (68)
lx =1, [V} =1
are:

1. Barker code (roal), x, » 1.

Xy Y|
X Y,
X3 Y)
sl |=].]. (68.1)
Xy=i Y
XN Y;

whire Y & A X (not an cigenveetor) for 1 > 2. This possibility has to meot properties (32) through
(40).

2. G-polphode:
a. 8 X= 21 Xeigenvector mapping. (Sce the appendix for further properties in this case.) (68.2)
b. noncigeavector mapping. ¥ = A, X.

As an example of possibility 2.b, consider the specific polphodes that are given by the generalized
Barker codes (3], These are derived (rom a “{father Barker code Xy by:

x v (x)y /Um0, (69)

where 8 is some angle 27/ P (Pis an integer).
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It is actually the addition to each element (x;) 5, of a progressing phase step (8 can be further gen-
eralized). This modification does not change the envelope of the autocorrelation funciion.

Thus, all the codes defined by (69) form polphodes, some of them are G-polphodes.

Examples for N = 4.

1.
1 1
1) o=90° J
Xg=14|=> X={;
_1 J
11 11
2 2 2 2
U e WA B R I O
2 2 2 2 J 1
-l P Y § o1l &
2 2 2 2
1 7.1z
2 2 2 2

We see that X is not an eigenvector, but it is a G-polphode since; R(3) = j, R(1) = j, as
requirea by (16a).

2.
1 1

1 o=w0r

1 ~J
l 1
J i
BA’- ‘ - l N
- -1

X is not an eigenvector, but it is a G-polphode since, R(3) = j, R(1) = -}

3. | 1

1} omase IL“_SI.O

~1 1 /=45

1 1 1 1 1 1

7 7 7 2, 3 + 2j+cos451

R el MY o (L L

7 37 3 3 1/45° 3 5 J +sin 459

- - - = + -—j—cos451

2 2 2 2 1 /=45 2 2

1 4.1 = 1 _1,..

2 2772 7 "7
27
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X is a polphode, but not a G-polphode since the autocorrelation funtion is,
. R()=4, R(1) =1/45°, R(2) =0, R(3) =1 /-45° and R(1) + R*(3) # 0, in contrast to Eq.

;_ (16a). Note also that the right side of Eq. (70) does not have constant amplitude elements. This last
¢ : example shows that there might be polphodes that are not G-polphodes, thus our analysis does not
' cover them.

k. . At this point, we review our results as shown in Fig. 11. A question mark denotes codes that

were not investigated in this paper.

] CODES

? BARKER TYPE AUTOCORRELATION FUNCTION

3 / \
3

‘ REAL (BARKER) POLPHODES
1 X;* 2 [x,]+1
, ‘ 00D LENGYH EVEN LENGTH QDD LENGTH  EVEN LENGTH
y BARKERS 1 \ ? / \
3 357,013
Ne2 Nig2  Nwa? T i Ne g2
(+-] IMPOSSIBLE —
; (-+] ’
] N:4 4>2 G-POLPHODES NOT G-POLPHODES
- 42 BX: Y AX 1
3 [#+-+] NON-EIGENVECTOR.
[ves-] PROPERTIES BXs 21X BX:YWAX
: (321 THRQUGH (401 EIGENVECTOR CODE NON-EIGENVECTOR
[1401] cooe
|y
| 8y
1434
| .
e
*
5 )
: 129
] - I —
] REDUCED SEARCH PROBLEM
1 Fig. 11 — Review of results; a question mark denotes codes that were not investigated in the paper
|
3 1 ‘ Z-TRANSFORM INTERPRETATION
4 i

' Further insight into the problem of generating a code is achieved by using the Z-transform. Basi-
: cally, we need a sequence x;(Ix] =1, i=1,2, ..., N, where N = /2) such that its DFT will have
constant magnitude.

bk S dlde i

; The DFT of a sequence is given by N sampling points of the Z-transform. The sampling points
are uniformly distributed on the unity circle of the Z-plane (see Fig. 12).
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Z PLANE

SAMPLING POINTS.

Fig. 12 — The DFT of a sequence is given by N sampling points (uniformly
distributed on the unity circle) of the Z-transform

The Z-transform of the sequence x;, x3, ..., Xy is

X(Z) = x; + x3Z27" + 3278+ .+ xyZ-W-D (1)
_X ZN V4 Z¥ b ey ZNT 4 xee Z 4 xy
ZN-1 :
Then: _
[DFT of x;] = X(2Z) - X(K) (72)
Z=- Wk
where Wm ¢ /2N K w0, 1,...., N~1

We see in (71), that X(Z) has N — | poles at the origin (Z = 0), and N — 1 zeroes that depend
on the sequence x;.

If the x,'s are reat (£1), the roots of the polynomial in (71) are either real or complex conjugates
in pairs.

Since N is even, N — | is odd, so that out of the N — 1 zeroes of X(Z) there will be an even
number of complex conjugate zeroes and an odd number of real zeroes.

Thus X(Z) for a real sequence x, can be factored to the form:

XD = i Z-2)(Z-2)Z-2) ... (2-20Z-24...(Z- 202~ Z)) ()
Ne—  cmm—— . cstna————

odd aumber of real zeroes pairs of complex conjugate zeroes

Since we are interested in the magnitude of the DFT of the sequence at Z = WX = ¢=/2¢kIN
where K =0, ..., N — 1, we can ighore the (N - 1) poles at the origin (they do not affect the magni-
tude of X(K)).
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As an example, examine a Barker code of length 4:
x1=1 x3=1 x3=-1 x4=1

B34+ Z22—-7Z+1 - (Z-'Z[)(Z—Zz)(z—23)

~-1 _ 7-2 -3 -
X(Z)=1+2 Zt+ 7 3 =3

(74)

Carrying out the factorization we get:
Z,=~1.84, Z) = 0.42 + j0.6, Z3 =~ 0.42 — j0.6 = Z%.

Those values are calculated approximately for the sake of illustration (see Fig. 13).

2y =-1.84 4 \)

Fig. 13 — Poles and zeroes of the Z-transform for Barker code 4.
A, B, C, D are sampling points of the Z-transform.

The sampling points of X(Z) are A, B, C, D. When X(Z) is evaluated at those points, we get
the DFT X (K) of the sequence.

As a geometrical interpretation, we see that the exact values of Z,, Z,, Z, present an exact “sym-
metry" towards the sampling points A, B, C, D, in the sense that the product of the magnitudes of the
three phasors (from the sampling point to the zeroes Z,, Z,, Z;) gives exactly the value 2, for each
sampling point. In Fig. 13, we sketched the three phasors for the sampling point B.

For point B:

[U=2) U=29) G=Z3)| = layl  lag|  lag] = 2. (75.1)
For point A:

[A-2Z)(A=2) 1 =2Z)|=12, (75.2)

and similarly for points C and D.

This property (75) is evident when looking at the Z transform:
X(Z2) =1+ 27V Z704 27, (76)

and substituting directly the sampling points A, B, C, D. But from a geometric point of view, it is a
rare combination of the zetoes of X (Z), that present such a "nice” symmetry.
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Notice, however, that these specific zeroes of Barker code 4 (Z;, Z,, Z;) do not present the
above symmetry towards any number of uniformly distriouted sampling points on the unity circle. For
example, for eight uniformly distributed sampling points, one of them will be Z = ¢/*/4, and substitut-
ing it in (76):

|X(Z = e/™/4)| = |1 + e I%/4 —pin/2 4 o=i3%/4] 2 3
which means that these specific zeroes of Barker code 4 cannot be "used” for generating higher length
codes.

Of course, the same analysis holds for a complex sequence |x,| = 1, except that the N — 1 zeroes
of X(Z) will not be in conjugate pairs. But again for a G-polphode, these N — 1 zeroes of X(Z) are
required to present the above "symmetry" towards the N sampling points Z = WX,

One might suspect that some uniform distribution of the zeroes of X(Z) will give the desired
symmetry. A moment of reflection shows that it is impossible since we have N — 1 zeroes of X(Z)
and N sampling points.

This means that if there is a solution, the zeroes of X(Z) will be distributed on the Z plane in
some "rare* combination (and, of course, not on the unity circle).

Beyond the above "symmetry" these N — 1 zeroes of X(Z) must fulfill other requirements.

Suppose we found some "symmetric” structure (in the above sense) of the zeroes, Z;, Z,, ...,

Zy-y.
Then:
(Z-2)Z~-2)..(Z-2Zy) X ZVV+X,ZN04 .+ Xy ,
X(2) - — - e am
X(2Z) Z¥! = (~2Z) (=2 ... (~Zy.) = Xy (78)
Z=0
i.e.
IZ; ¢ Zz TR ZN-—II - 1, (78.1)

which means that some of the zeroes are outside the unity circle while the others are inside, such that
their product has unity magnitude.

Another point to mention is that the necessary condition is "similar* to designing an exact all pass
discrete filter whose finite impulse response is & (n) = {xy,x;, ..., X,}, whers x| = 1,

In Ref. §, it is shown that an all-pass discrete filter has a Z transform that factors to terms of the
form:

1-ag-'Z!
- L 7
H(Z) oz (79
where 0 < a < 1 (ais resl), such that the pole and the zero in (79) give a constant amplitude for
every frequency. This is actually more thain we need, since cur requirement is to have constant ampli-
tude /only in the N sampling points of X(Z). But, of course, in our problem, since we have a finite
length, we don’t have poles of X(Z) (except those in the origin), and we cannot get terms of the form
(79).
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FINAL COMMENTS
1. It is interesting to note that Frank codes of even length meet the requirements of constant

amplitude DFT, and R(K) + R*(N — K) = 0, but still they don’t form G-polphodes. For example,
the Frank code of length N = 16 is:

¢,(deg): 0, 0, 0, 0, | 0, 90, 180, —90, | ¢, 180, 0, 180, | 0, 90, 180, 90 | (80)
1 /0 1[0
1 /0 w
1 /o 1 /~90
1 o -W
1 /0 1/0
1 /% W
Lofso) 1% )
Bl [0|=-; W
N AL
I /180 ~W
1 /0 1/-%0
1 /is0 W
A AL
1 /=% - W
Iofso} |1/
1 /%0 - W
[ S

where W = ¢~/3%/10 w 1/-22.5°

Algo, it is easy to verify that R(X) + R*(N -~ K) = 0, but clearly some time sidelobes of the
Frank code are bigger than unity magnitude.

This provides evidence again that our analysis gave necessary conditions, but not sufficient ones.
Therefore, we have to search for the solution.

Note also that Barker 4 codes are actually a special case of Frank codes. The analysis can help in
searching for structures of either the code sequence x;, or the distribution of the zeroes of X(Z).

2. An issue to be further investigated: Is it possible to approximate the requirement of constant
amplitude DFT of the sequence, and thus approach the "Barker level® of the autocorrelation function?
At least intuitively we might think that a constant amplitude DFT is a "good property.”

CONCLUSION

The motivation for the analysis was to find a finite length code with Barker typs autocorrelation
function beyond the known ones. Though no specific code was found, the analysis derived necessary
requirements for even-length Barker codes and G-polphodes. These requirements can reduce the
search problem for the above codes.

s ot = B n

The different points of view presented here (time domain, DFT of sequences, the Z-transtorm
geomeirical interpretation, linear algebra) might also suggest structures and properties of good codes,
which only approach the Barker level in the autocorrelation function.
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Appendix
FURTHER PROPERTIES OF AN EIGENVECTOR G-POLPHODE

We have seen that an eigenvector G-polphode must fulfill Eq. (68.2) of the text:
BX=1+1'X

Let X,, X, be eigenvectors of B, which correspond to A = +1, A = —1, respectively.
BX, = X, (also B*X, = X,)
BX, = X, (also B*X, = —X,)
From (A.2.1), multiplying both sides by B
BBX, = BX,» B*X, = X,.
Similarly, from (A.2.2):
BEX, = —BX,» B X, = X,.

i.e., X; and X, are also eigenvectors of B%, both correspond to the eigenvalue A = 1 of B2,

The matrix B (N x N me‘rix) is:

1000 --- 00

0000 .-+ 01

0000 .-+ 10
-

0001 0

0010 0

0100 0

(A1)

(A2.1)
(A2.2)

(A.3)

(A4)

(A.5)

The matrix 8% has M eigenvalues; some of them are A = 1, and the others are A = —1 (by the

way, the cigenvalues A = %1 of 8 map to the eigenvalue A = 1 of B).

From (A.3), (A.5):

X X X
X1 XN X,
2 ¢) Xy- Xy
X¢ XN..; Xg
BX, = B? - -~ .
Kv-a| | X Xy-2
? (VY I P §1 Xy
XN X; Xy
34
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i.e.,:

Ay=X;, Xy_.1= X, Xy-3 = X4, etc. (A7.1)

The same analysis holds for X, so that if a G-polphode eigenvector exists, it must have the struc-
ture:

1 fa 1/
1 [a 18,
1/ay 1/B,
1 faq 1/84
X = ' T Xy - ' A7.2
= famzn|T T | (Bapn A12)
I fa 1 /B
1 fay 1 /8y
1 fay 1 /8
Now {rom (A.2.1) (by conjugating) we get:
B* X - X, (A.8)
BB* X% = BYS =» BY% = X°, (A.9)
and similarly,
BX} = -X3. (A.10)

Equations (A.2.1) and (A.9) mean that if X, is an cigenvector of B (for A = 1), then X4 is also
an cigenvector of B (also for k = 1). If X, is real, then XS = X, (they are identical).

But we look for an eigenvector code X, (in which 1X;| = 1). We have scen in the text, that such
an X, cannot be real for I > 2. So X,, if it exisls, is a polyphuse code. Therefore, X% i3 asother
(lincarly independent to X,) eigenvector code.

Similarly, if X, is an cigenvector code (for A = ~1), then X3 is another (linearly independent)
cigonvector code.

To summarsize, the eigenvector G-polphodes (for 1 > 2) will fulfill:
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twm | [t oy | [t [z
1/a; 1 [y /= 1 [~e
->j Loy | |1fes W S I L WE
' BX,= B|. - . BX, =8| - (A1)
= V/anpa] |1 [anps B V/=anpn| |1 /~anne
2 L ey ||t fza
; Y2 I (s Y I
| N LV ! (=B, ! [y
1{B I (B, 1[=B: V(=B
1 /By {8y 1[=B V=8
' sl : sl : (A12)
= V[Buyzar U {Bupa| Xy = 1 /=Bxnay - V/=Brpsi|
; e | e s |
L 1 (B 1 {=B; H{-6;

Note that in (A.11), and similarly in (A.12), out of the N equativns for X,, we have N/2~ |
; redundant equations which can be erasad: the last equation is ideatical to the second, the (N —~ 1hh
: cquation is identical to the third, etc. Thus, if we erase the last N/2 - | equations, we are lefl with
! N/2 + | equations (some of them wre slso redundant) that should be solved parametrically for a, a»,
Uf TR UL T T D

r } Since we have parameric rolations for the a,'s, we have fo choose some of them such that we get
L the desired autocorrelation funciion. This again is a scarch problem.
5 ’ . Applying the above analysis for N = 16 we get:

- BY, = X,

X7 w [ fay Vfay Vay Vfag Vay Vfay Vfas | ay V fag Vfag tfar §fag 3 fag 1 fag [y

4 [ fay).

P

- —
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After solving the N/2 + | = 9 equations, we get the parametric relations:

(1 fay +1 fas+ 1 fasl = 1/2 (1 [a) + 1 [al,
(1 fay + 1 fay + 1 fag+ 1 fag] = (I [a; = | [as],
1
3 (1&—1&—1E2+1&-[1[ﬂ—1@21'm. (A.13)
~ and
1 — cos (2n/16)
j “&-l[ﬂ]-“&’l@—’]'cosigd:;'m)'

Sirce the conjugate code X% is also an eigenvector (also for A = 1), we must have the above four
relations when | l&, is replaced by | /—a;. Adding and subtracting equations in the above cight rela-
tions (complex) gives eight real relations {with cos a; and sin a,).

i
£
¥

For example, the first equation of (A.13) together with the corresponding one (with 1/~a))
result in:

€05 ary + COS arg + COS ay = 1/2 (coS @y + €08 ag),
and
sin oy + Sin as = sin ay = 1/2 (sin a) + sin ay).

A code (of length 16) that satisfies the cight relations is a candidate for eigenvector G-polphode
(has o be verificd in the time domain).

Note aiso that if the structute (A.11) is a G-polphode, it is required that for any length M
/3 € (ay~a)) € 42/,
sinee the second siep of the autocorvelation process gives:
RN =D =10+ /o)~ a,
; ) and ity magnitude must de¢ smaller than of cgual to ong.
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